Malicious JavaScript detection using machine learning
نویسنده
چکیده
JavaScript has become a ubiquitous Web technology that enables interactive and dynamic Web sites. The widespread adoption, along with some of its properties allowing authors to easily obfuscate their code, make JavaScript an interesting venue for malware authors. In this survey paper, we discuss some of the difficulties in dealing with malicious JavaScript code, and go through some recent approaches to detect and classify malicious JavaScript code statically using machine learning methods [10, 11, 12].
منابع مشابه
Analyzing new features of infected web content in detection of malicious web pages
Recent improvements in web standards and technologies enable the attackers to hide and obfuscate infectious codes with new methods and thus escaping the security filters. In this paper, we study the application of machine learning techniques in detecting malicious web pages. In order to detect malicious web pages, we propose and analyze a novel set of features including HTML, JavaScript (jQuery...
متن کاملFeature-based Malicious URL and Attack Type Detection Using Multi-class Classification
Nowadays, malicious URLs are the common threat to the businesses, social networks, net-banking etc. Existing approaches have focused on binary detection i.e. either the URL is malicious or benign. Very few literature is found which focused on the detection of malicious URLs and their attack types. Hence, it becomes necessary to know the attack type and adopt an effective countermeasure. This pa...
متن کاملMalicious Pdf Document Detection Based on Feature Extraction and Entropy
In this paper we present a machine learning based approach for detection of malicious PDF documents. We identify various features in PDF documents which are used by malware authors to construct a malicious file. Based on these feature set we arrive on models which is used to detect malicious PDF documents. Based on these feature sets, detection rate is high as compared to approaches which depen...
متن کاملOcument D Etection B Ased on F
In this paper we present a machine learning based approach for detection of malicious PDF documents. We identify various features in PDF documents which are used by malware authors to construct a malicious file. Based on these feature set we arrive on models which is used to detect malicious PDF documents. Based on these feature sets, detection rate is high as compared to approaches which depen...
متن کاملEfficient Prediction of Cross-Site Scripting Web Pages using Extreme Learning Machine
Malicious code is a way of attempting to acquire sensitive information by sending malicious code to the trustworthy entity in an electronic communication. JavaScript is the most frequently used command language in the web page environment. If the hackers misuse the JavaScript code there is a possibility of stealing the authentication and confidential information about an organization and user. ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2017